Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
2.
Vaccines (Basel) ; 11(3)2023 Mar 16.
Article in English | MEDLINE | ID: covidwho-2255976

ABSTRACT

DNA integrity is a key issue in gene therapy and genetic vaccine approaches based on plasmid DNA. In contrast to messenger RNA that requires a controlled cold chain for efficacy, DNA molecules are considered to be more stable. In this study, we challenged this concept by characterizing the immunological response induced by a plasmid DNA vaccine delivered using electroporation. As a model, we used COVID-eVax, a plasmid DNA-based vaccine that targets the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Increased nicked DNA was produced by using either an accelerated stability protocol or a lyophilization protocol. Surprisingly, the immune response induced in vivo was only minimally affected by the percentage of open circular DNA. This result suggests that plasmid DNA vaccines, such as COVID-eVax that have recently completed a phase I clinical trial, retain their efficacy upon storage at higher temperatures, and this feature may facilitate their use in low-/middle-income countries.

3.
Arch Virol ; 168(4): 124, 2023 Mar 29.
Article in English | MEDLINE | ID: covidwho-2271114

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), has caused more than 760 million cases and over 6.8 million deaths as of March 2023. Vaccination has been the main strategy used to contain the spread of the virus and to prevent hospitalizations and deaths. Currently, two mRNA-based vaccines and one adenovirus-vectored vaccine have been approved and are available for use in the U.S. population. The versatility, low cost, and rapid production of DNA vaccines provide important advantages over other platforms. Additionally, DNA vaccines efficiently induce both B- and T-cell responses by expressing the antigen within transfected host cells, and the antigen, after being processed into peptides, can associate with MHC class I or II of antigen-presenting cells (APCs) to stimulate different T cell responses. However, the efficiency of DNA vaccination needs to be improved for use in humans. Importantly, in vivo DNA delivery combined with electroporation (EP) has been used successfully in the field of veterinary oncology, resulting in high rates of response after electrochemotherapy. Here, we evaluate the safety, immunogenicity, and protective efficacy of a novel linear SARS-CoV-2 DNA vaccine candidate delivered by intramuscular injection followed by electroporation (Vet-ePorator™) in ferrets. The linear SARS-CoV-2 DNA vaccine candidate did not cause unexpected side effects. Additionally, the vaccine elicited neutralizing antibodies and T cell responses on day 42 post-immunization using a low dose of the linear DNA construct in a prime-boost regimen. Most importantly, vaccination significantly reduced shedding of infectious SARS-CoV-2 through oral and nasal secretions in a ferret model.


Subject(s)
COVID-19 , Vaccines, DNA , Viral Vaccines , Humans , Animals , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , Vaccines, DNA/genetics , Ferrets , Virus Shedding , Antibodies, Viral , Antibodies, Neutralizing , DNA , Spike Glycoprotein, Coronavirus/genetics , Immunogenicity, Vaccine
4.
Mol Ther ; 31(3): 788-800, 2023 03 01.
Article in English | MEDLINE | ID: covidwho-2238852

ABSTRACT

The COVID-19 pandemic and the need for additional safe, effective, and affordable vaccines gave new impetus into development of vaccine genetic platforms. Here we report the findings from the phase 1, first-in-human, dose-escalation study of COVID-eVax, a DNA vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Sixty-eight healthy adults received two doses of 0.5, 1, or 2 mg 28 days apart, or a single 2-mg dose, via intramuscular injection followed by electroporation, and they were monitored for 6 months. All participants completed the primary safety and immunogenicity assessments after 8 weeks. COVID-eVax was well tolerated, with mainly mild to moderate solicited adverse events (tenderness, pain, bruising, headache, and malaise/fatigue), less frequent after the second dose, and it induced an immune response (binding antibodies and/or T cells) at all prime-boost doses tested in up to 90% of the volunteers at the highest dose. However, the vaccine did not induce neutralizing antibodies, while particularly relevant was the T cell-mediated immunity, with a robust Th1 response. This T cell-skewed immunological response adds significant information to the DNA vaccine platform and should be assessed in further studies for its protective capacity and potential usefulness also in other therapeutic areas, such as oncology.


Subject(s)
COVID-19 , Vaccines, DNA , Adult , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Double-Blind Method , Pandemics/prevention & control , SARS-CoV-2 , Vaccines, DNA/adverse effects
5.
Mol Ther Methods Clin Dev ; 28: 238-248, 2023 Mar 09.
Article in English | MEDLINE | ID: covidwho-2181965

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the COVID-19 pandemic, has been shown to infect a wide range of animal species, especially mammals, and besides human-to-human transmission, human-to-animal transmission has also been observed in some wild animals and pets, especially in cats. It has been demonstrated that cats are permissive to COVID-19 and are susceptible to airborne infections. Given the high transmissibility potential of SARS-CoV-2 to different host species and the close contact between humans and animals, it is crucial to find mechanisms to prevent the transmission chain and reduce the risk of spillover to susceptible species. Here, we show results from a clinical trial conducted in domestic cats to assess safety and immunogenicity of a linear DNA (linDNA) vaccine encoding the receptor-binding domain (RBD) from SARS-CoV-2 (Lin-COVID-eVax). Lin-COVID-eVax proved to be safe, with no significant adverse events, and was able to elicit both RBD-specific antibodies and T cells. Also, the linDNA vaccine induced neutralizing antibody titers against ancestral SARS-CoV-2 virus and its variants. These findings demonstrate the safety and immunogenicity of a genetic vaccine against COVID-19 administered to cats and strongly support the development of vaccines for preventing viral spread in susceptible species, especially those in close contact with humans.

6.
Front Immunol ; 13: 981693, 2022.
Article in English | MEDLINE | ID: covidwho-2142011

ABSTRACT

Objectives: Emergence of new variants of SARS-CoV-2 might affect vaccine efficacy. Therefore, assessing the capacity of sera to neutralize variants of concern (VOCs) in BSL-2 conditions will help evaluating the immune status of population following vaccination or infection. Methods: Pseudotyped viruses bearing SARS-CoV-2 spike protein from Wuhan-Hu-1/D614G strains (wild type, WT), B.1.617.2 (Delta), or B.1.1.529 (Omicron) VOCs were generated to assess the neutralizing antibodies (nAbs) activity by a pseudovirus-based neutralization assay (PVNA). PVNA performance was assessed in comparison to the micro-neutralization test (MNT) based on live viruses. Sera collected from COVID-19 convalescents and vaccinees receiving mRNA (BNT16b2 or mRNA-1273) or viral vector (AZD1222 or Ad26.COV2.S) vaccines were used to measure nAbs elicited by two-dose BNT16b2, mRNA-1273, AZD1222 or one-dose Ad26.CO2.S, at different times from completed vaccination, ~ 1.5 month and ~ 4-6 months. Sera from pre-pandemic and unvaccinated individuals were analyzed as controls. Neutralizing activity following booster vaccinations against VOCs was also determined. Results: PVNA titers correlated with the gold standard MNT assay, validating the reliability of PVNA. Sera analyzed late from the second dose showed a reduced neutralization activity compared to sera collected earlier. Ad26.CO2.S vaccination led to very low or absent nAbs. Neutralization of Delta and Omicron BA.1 VOCs showed significant reduction of nAbs respect to WT strain. Importantly, booster doses enhanced Omicron BA.1 nAbs, with persistent levels at 3 months from boosting. Conclusions: PVNA is a reliable tool for assessing anti-SARS-CoV-2 nAbs helping the establishment of a correlate of protection and the management of vaccination strategies.


Subject(s)
COVID-19 , RNA Viruses , Ad26COVS1 , Antibodies, Neutralizing , COVID-19/prevention & control , Carbon Dioxide , ChAdOx1 nCoV-19 , Humans , Membrane Glycoproteins/metabolism , RNA, Messenger , Reproducibility of Results , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Viral Envelope Proteins
7.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2057705

ABSTRACT

Objectives Emergence of new variants of SARS-CoV-2 might affect vaccine efficacy. Therefore, assessing the capacity of sera to neutralize variants of concern (VOCs) in BSL-2 conditions will help evaluating the immune status of population following vaccination or infection. Methods Pseudotyped viruses bearing SARS-CoV-2 spike protein from Wuhan-Hu-1/D614G strains (wild type, WT), B.1.617.2 (Delta), or B.1.1.529 (Omicron) VOCs were generated to assess the neutralizing antibodies (nAbs) activity by a pseudovirus-based neutralization assay (PVNA). PVNA performance was assessed in comparison to the micro-neutralization test (MNT) based on live viruses. Sera collected from COVID-19 convalescents and vaccinees receiving mRNA (BNT16b2 or mRNA-1273) or viral vector (AZD1222 or Ad26.COV2.S) vaccines were used to measure nAbs elicited by two-dose BNT16b2, mRNA-1273, AZD1222 or one-dose Ad26.CO2.S, at different times from completed vaccination, ~ 1.5 month and ~ 4-6 months. Sera from pre-pandemic and unvaccinated individuals were analyzed as controls. Neutralizing activity following booster vaccinations against VOCs was also determined. Results PVNA titers correlated with the gold standard MNT assay, validating the reliability of PVNA. Sera analyzed late from the second dose showed a reduced neutralization activity compared to sera collected earlier. Ad26.CO2.S vaccination led to very low or absent nAbs. Neutralization of Delta and Omicron BA.1 VOCs showed significant reduction of nAbs respect to WT strain. Importantly, booster doses enhanced Omicron BA.1 nAbs, with persistent levels at 3 months from boosting. Conclusions PVNA is a reliable tool for assessing anti-SARS-CoV-2 nAbs helping the establishment of a correlate of protection and the management of vaccination strategies.

8.
Vaccines (Basel) ; 10(8)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957472

ABSTRACT

The COVID-19 pandemic is entering a new era with the approval of many SARS-CoV-2 vaccines. In spite of the restoration of an almost normal way of life thanks to the immune protection elicited by these innovative vaccines, we are still facing high viral circulation, with a significant number of deaths. To further explore alternative vaccination platforms, we developed COVID-eVax-a genetic vaccine based on plasmid DNA encoding the RBD domain of the SARS-CoV-2 spike protein. Here, we describe the correlation between immune responses and the evolution of viral infection in ferrets infected with the live virus. We demonstrate COVID-eVax immunogenicity as means of antibody response and, above all, a significant T-cell response, thus proving the critical role of T-cell immunity, in addition to the neutralizing antibody activity, in controlling viral spread.

9.
Toxicol Pathol ; 49(7): 1255-1268, 2021 10.
Article in English | MEDLINE | ID: covidwho-1398800

ABSTRACT

COVID-19 is a rapidly spreading disease, posing a huge hazard to global health. The plasmid vaccine pTK1A-TPA-SpikeA (named COVID-eVax) encodes the severe acute respiratory syndrome coronavirus 2 S protein receptor-binding domain, developed for intramuscular injection followed by electroporation (EP). The aim of this study was to assess the systemic toxicity and local tolerance of COVID-eVax delivered intramuscularly followed by EP in Sprague Dawley (SD) rats. The animals were killed 2 days and 4 weeks after the last injection (30-day and 57-day, respectively). No mortality was observed, and no signs of toxicity were evident, including injection site reactions. A lasting and specific immune response was observed in all treated animals, confirming the relevance of the rat as a toxicological model for this vaccine. Histopathological evaluation revealed muscle fiber necrosis associated with subchronic inflammation at the injection sites (at the 30-day time point), with a clear trend for recovery at the 57-day time point, which is expected following EP, and considered a desirable effect to mount the immune response against the target antigen. In conclusion, the intramuscular EP-assisted DNA vaccine, COVID-eVax showed an excellent safety profile in SD rats under these experimental conditions and supports its further development for use in humans.


Subject(s)
COVID-19 , Vaccines, DNA , Animals , Antibodies, Viral , COVID-19 Vaccines , Electroporation , Humans , Plasmids , Rats , Rats, Sprague-Dawley , SARS-CoV-2 , Vaccines, DNA/toxicity
10.
J Transl Med ; 18(1): 494, 2020 12 30.
Article in English | MEDLINE | ID: covidwho-1004340

ABSTRACT

BACKGROUND: Tracking the genetic variability of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) is a crucial challenge. Mainly to identify target sequences in order to generate robust vaccines and neutralizing monoclonal antibodies, but also to track viral genetic temporal and geographic evolution and to mine for variants associated with reduced or increased disease severity. Several online tools and bioinformatic phylogenetic analyses have been released, but the main interest lies in the Spike protein, which is the pivotal element of current vaccine design, and in the Receptor Binding Domain, that accounts for most of the neutralizing the antibody activity. METHODS: Here, we present an open-source bioinformatic protocol, and a web portal focused on SARS-CoV-2 single mutations and minimal consensus sequence building as a companion vaccine design tool. Furthermore, we provide immunogenomic analyses to understand the impact of the most frequent RBD variations. RESULTS: Results on the whole GISAID sequence dataset at the time of the writing (October 2020) reveals an emerging mutation, S477N, located on the central part of the Spike protein Receptor Binding Domain, the Receptor Binding Motif. Immunogenomic analyses revealed some variation in mutated epitope MHC compatibility, T-cell recognition, and B-cell epitope probability for most frequent human HLAs. CONCLUSIONS: This work provides a framework able to track down SARS-CoV-2 genomic variability.


Subject(s)
COVID-19/virology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Binding Sites/genetics , COVID-19/epidemiology , COVID-19 Vaccines/genetics , Computational Biology , Data Mining , Genetic Variation , Humans , Immunogenetic Phenomena , Models, Molecular , Mutation , Pandemics/statistics & numerical data , Protein Domains , Receptors, Virus , SARS-CoV-2/immunology , Software , Spike Glycoprotein, Coronavirus/immunology , Translational Research, Biomedical
12.
J Transl Med ; 18(1): 222, 2020 06 03.
Article in English | MEDLINE | ID: covidwho-505907

ABSTRACT

COVID-19 has rapidly spread all over the world, progressing into a pandemic. This situation has urgently impelled many companies and public research institutes to concentrate their efforts on research for effective therapeutics. Here, we outline the strategies and targets currently adopted in developing a vaccine against SARS-CoV-2. Based on previous evidence and experience with SARS and MERS, the primary focus has been the Spike protein, considered as the ideal target for COVID-19 immunotherapies.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Spike Glycoprotein, Coronavirus/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/adverse effects , Antibodies, Viral/biosynthesis , Antibody-Dependent Enhancement/immunology , Betacoronavirus/genetics , Betacoronavirus/pathogenicity , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/genetics , Coronavirus Infections/immunology , Humans , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Translational Research, Biomedical , Viral Vaccines/adverse effects , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL